Trigonometri : Sinus, Cosinus dan Tangen Sudut Ganda

*# SINUS SUDUT GANDA #* 

\(\sin 2\alpha^{\circ} = 2 \cdot \sin \alpha^{\circ} \cdot \cos \alpha^{\circ}\) 

Pembuktian:  

\(\sin \left ( \alpha ^{\circ} + \beta ^{\circ}\right ) = \sin \alpha ^{\circ} \cdot \cos \beta ^{\circ} + \cos \alpha ^{\circ} \cdot \sin \beta ^{\circ}\)  

\(\sin 2\alpha ^{\circ} = \sin \left ( \alpha ^{\circ} + \alpha ^{\circ} \right )\)  

\(\sin 2\alpha ^{\circ} = \sin \alpha ^{\circ} \cdot \cos \alpha ^{\circ} + \cos \alpha ^{\circ} \cdot \sin \alpha ^{\circ}\)  

\(\sin 2\alpha ^{\circ} = 2 \cdot \sin \alpha ^{\circ} \cdot \cos \alpha ^{\circ}\) 

 

Contoh Soal: 

 

1. Diketahui \(\sin A = -\frac{5}{13}\) dimana \(A\) di kuadran III. Dengan menggunakan rumus sudut ganda, hitunglah \(\sin 2A\). 

Penyelesaian: 

\(r^{2} = x^{2}+y^{2}\rightarrow x^{2} = r^{2}-y^{2}\)  

\(x^{2} = 13^{2}-\left ( -5 \right )^{2}\)  

\(x^{2} = 168-25\)  

\(x^{2} = 144\)  

\(x = 12\), karena di kuadran III  

\(\cos A = -\frac{x}{r}\)  

\(\cos A = -\frac{12}{13}\)  

\(\sin 2A = 2\cdot \sin A\cdot \cos A\)  

\(\sin 2A = 2\left ( -\frac{5}{13} \right )\left ( -\frac{12}{13} \right )\)  

\(\sin 2A = \frac{120}{169}\) 

 

2. Diketahui \(\cos A = -\frac{4}{5}\) dan \(\sin B = \frac{5}{13}\). Sudut \(A\) dan \(B\) tumpul. Hitunglah \(\sin \left ( A + B \right )\).  

Penyelesaian: 

\(\cos A = -\frac{4}{5}\), maka \(\sin A = \frac{3}{5}\), kuadran II. 

\(\sin B = \frac{5}{13}\), maka \(\cos B = -\frac{12}{13}\), kuadran II. 

\(\sin \left ( A+B \right ) = \sin A\cdot \cos B + \cos A\cdot \sin B\) 

\(= \frac{3}{5}\cdot \left ( -\frac{12}{13} \right ) + \left ( -\frac{4}{5} \right )\cdot \frac{5}{13}\) 

\(= -\frac{36}{65} - \frac{20}{65} = \frac{56}{65}\)


*# COSINUS SUDUT GANDA #*

\( \cos 2A = \cos^{2} A - \sin^{2} A\) 

\(= 1 - \sin^{2} A\) 

\(= 2 \cos^{2} A\) 

Pembuktian rumus \( \cos (\alpha + \beta )\) 

\( \cos (\alpha + \beta ) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta \) 

\( \cos (\alpha + \alpha) = \cos \alpha . \cos \alpha - \sin \alpha . \sin \alpha \) 

\( \cos 2 \alpha = \cos^{2} \alpha - \sin^{2} \alpha \) \( \mathbf{(Terbukti)}\)


Pembuktian \( \cos 2 \alpha = \cos^{2} \alpha - \sin^{2} \alpha \) 

\( \cos 2 \alpha = \cos^{2} \alpha - \sin^{2} \alpha \) 

\(= \cos^{2} \alpha - (1 - \cos^{2} \alpha ) \) 

\(= \cos^{2} \alpha - 1 + \cos^{2} \alpha \) 

\(= 2 \cos^{2} - 1 \)  \( \mathbf{(Terbukti)}\) 

\( \mathbf{atau} \) 

\( \cos 2 \alpha = \cos^{2} \alpha - \sin^{2} \alpha \) 

\(= (1 - \sin^{2} \alpha ) - \sin^{2} \alpha \) 

\(= 1 - \sin^{2} \alpha - \sin^{2} \alpha \) 

\(= 1 - 2 \sin^{2} \alpha \)  \( \mathbf{(Terbukti)}\) 

 

Pembuktian \( \sin^{2} + \cos^{2} = 1 \) : 

Dengan menggunakan Phytagoras 

\( \sin^{2} + \cos^{2} = 1 \) 

\( b^{2} = a^{2} + c^{2} \) 

\( \left ( \frac{a}{\sin \alpha } \right )^{2} = (b . \sin\alpha )^{2} + (b . \cos \alpha )^{2}\) 

 \(\frac{a^{2}}{\sin ^{2} \alpha } = b^{2} . \sin^{2}\alpha + b^{2} . \cos^{2}\alpha \) 

\( \frac{a^{2}}{b^{2} . \sin \alpha } = \sin^{2} \alpha + cos^{2} \alpha \) 

\( \frac{a^{2}}{a^{2}} = \sin^{2} + \cos^{2} \) 

\( 1 = \sin^{2} + \cos^{2} \)  \( \mathbf{(Terbukti)}\) 


CONTOH SOAL  

1. Diketahui \( \cos A = -\frac{24}{25}\), dimana A di kuadran III. Dengan menggunakan rumus sudut ganda, 

Hitunglah nilai \( \cos 2A = \).....

\(\mathbf{Jawaban :}\)</span> 

\( \cos 2A = 2 \cos^{2} \alpha - 1\) 

\(= 2 \left ( -\frac{24}{25} \right )^{2} - 1\) 

\(= 2 \left ( -\frac{276}{625} \right ) - 1\) 

\(= \frac{1.152}{625} - 1\) 

\(= \frac{527}{625}\) 

Jadi nilai \( \cos 2A = \frac{527}{625}\)    

 

2. Carilah nilai dari \(6-12 \sin^{2}\frac{\pi}{12}=...\) 

\(\mathbf{Jawaban :}\) 

\(\pi = 180^{\circ}\) 

\(6 - 12 \sin^{2} \frac{\pi }{12} = 6(1-2 \sin^{2} \frac{\pi}{12})\) 

\(= 6 \cos \left ( 2 . \frac{\pi}{12} \right )\) 

\(= 6 \cos \frac{\pi}{6}\) 

\(= 6 \cos \frac{180^{\circ}}{6}\) 

\(= 6 \cos 30^{\circ}\) 

\(= 6 . \frac{1}{2}\sqrt{3}\) 

\(= 3\sqrt{3}\) 

 *# TANGEN SUDUT GANDA #*

\(\tan 2 \alpha^{\circ} = \frac{2 tan \alpha ^{\circ}}{1- \tan ^{2} \alpha ^{\circ}}\) 

Pembuktian :  

\(\tan \left ( \alpha ^{\circ} + \beta^{\circ} \right ) = \frac{\tan \alpha ^{\circ}}{\tan \beta ^{\circ}}\) 

Misal : 

\(\tan 2\alpha ^{\circ}\)= \(\tan \left ( \alpha ^{\circ} + \alpha ^{\circ} \right )\) 

\(\tan \left ( \alpha ^{\circ} + \alpha ^{\circ} \right )\) = \(\frac{\tan \alpha ^{\circ} + \tan \alpha ^{\circ}}{1 - \tan ^{\circ}\tan \alpha ^{\circ}}\) 

\(\tan 2 \alpha^{\circ}\)= \(\frac{ 2 tan \alpha^{\circ}}{1 - \tan ^{2}\alpha ^{\circ}}\) 

 

Contoh Soal! 

1. Sederhanakan bentuk berikut. 

\(\frac{2 \tan 3 \alpha }{1 - tan^{2} 3\alpha }\) 

Jawab : 

Misalkan \(3\alpha = \beta\) , Sehingga :  

\(=\frac{2 \tan \beta }{1 - \tan ^{2}\beta }\) 

\(=\tan 2 \beta\) 

\(=\tan 2 \left ( 3\alpha \right )\) 

\(=\tan 6\alpha\) 

2. Jika \(\tan x = \frac{1}{2}\) dan \(\tan y = \frac{1}{3}\) 

Hitunglah : 

\(\tan 2x\) 

\(\tan 2x = \frac{2 \tan x}{1 - \tan ^{2} x }\) 

\(\tan 2x = \frac{2.\frac{1}{2}}{1-\left ( \frac{1}{2} \right )^{2}}\) 

\(\tan 2x = \frac{1}{1-\frac{1}{4}}\) 

\(\tan 2x = \frac{1}{\frac{3}{4}}\) 

\(\tan 2x = \frac{4}{3}\)



Trigonometri : Sinus, Cosinus dan Tangen Sudut Ganda Rating: 4.5 Diposkan Oleh: Admin