Teori Bilangan: Induksi Matematika

# Soal

$2+9+28+65+126+217+344...$ $+n^3+1$ $=\frac{n^2(n+1)^2+4n}{4}$
Selanjutnya $n=1$
$n^3+1=1^3+1=2$ atau

$=\frac{n^2(n+1)^2+4n}{4}$= $\frac{1^2(1+1)^2+4.1}{4}$ $=2$
Selanjutnya $n=k$
$2+9+28+65+126+217+344...$ $+k^3+1$ $=\frac{k^2(k+1)^2+4k}{4}$
Selanjutnya $n=k+1$
$2+9+28+65+126+217+344...$ $+(k+1)^3+1$ $=\frac{(k+1)^2(k+1+1)^2+4(k+1)}{4}$
Pembuktian:
$\frac{k^2(k+1)^2+4k}{4}+(k+1)^3+1$ $=\frac{(k+1)^2(k+1+1)^2+4(k+1)}{4}$
sisi kiri:
$=\frac{k^2(k+1)^2+4k}{4}+(k+1)^3+1$
$=\frac{k^2(k+1)(k+1)+4k}{4}+{(k+1)(k+1)(k+1)(k+1)}+1$
$=\frac{k^2(k^2+2k+1)+4k}{4}+k^3+3k^2+3k+1+1$
$=\frac{k^4+2k^3+k^2+4k}{4}$ $+\frac{4(k^3+3k^2+3k+2)}{4}$
$=\frac{k^4+2k^3+k^2+4k+4k^3+12k^2+12k+8}{4}$
$=\frac{k^4+6k^3+13k^2+16k+8}{4}$
sisi kanan:
$=\frac{(k+1)^2(k+2)^2+4(k+1)}{4}$
$=\frac{(k+1)(k+1)(k+2)(k+2)+4k+4+4k+4}{4}$
$=\frac{(k^2+2k+1)(k^2+4k+4)+4k+4+4k+4}{4}$
$=\frac{k^4+4k^3+4k^2+2k^3+8k^2+8k+k^2+4k+4+4k+4}{4}$
$=\frac{k^4+gk^3+13k^2+16k+8}{4}$

# Soal

$3+6+11+18+27+38+51...$ $+n^2+2$ $=\frac{2n^3+3n^2+13n}{6}$
Mencari $Un$
$un=an^2+bn+c$
$a(1)^2+b(1)+c =3$
$a(2)^2+b(2)+c=6$
$a(3)^2+b(3)+c=11$
Hasil dari $Un$
$a+b+c=3$ (persamaan 1)
$4a+2b+c=6$ (persamaan 2)
$9a+3b+c=11$ (persamaan 3)
$(4a+2b+c)-(a+b+c)=6-3$
$=3a+b=3$ (persamaan 4)
$(9a+3b+c)-(4a+2b+c)=11-6$
$=5a+b=5$ (persamaan 5)
$(5a+b)-(3a+b)=5-3$
$=2a=2 ->a=1$
substitusikan $a=1$ ke dalam persamaan $4$
$(3a+b=3)=(3.1+b=3)=(3+b=3)=(b=0)$ $(a+b+c=3)+(1+0+c=3)=(1+c=3)=(c=2)$
Maka rumus umum untuk urutannya adalah $n^2+2$
Selanjutnya $n=1$
$n^2+2=1^2+2=3$ atau
$\frac{2n^3+3n^2+13n}{6}$ $=\frac{2(1)^3+3(1)^2+13(1)}{6}$ $=\frac{2+3+13}{6}$ $\frac{18}{6}=3$
Selanjutnya $n=k$
$3+6+11+18+27+38+51...$ $+k^2+2$ $=\frac{2k^3+3k^2+13k}{6}$
Selanjutnya $n=k+1$
$3+6+11+18+27+38+51...$ $+(k+1)^2+2$ $=\frac{2(k+1)^3+3(k+1)^2+13(k+1)}{6}$
$3+6+11+18+27+38+51...$ $+(k+1)^2+2$ $=\frac{2k^3+9k^2+25k+18}{6}$
Pembuktian:
$3+6+11+18+27+38+51...$ $+(k+1)^2+2$ $=\frac{2(k+1)^3+3(k+1)^2+13(k+1)}{6}$
$\frac{2k^3+3k^2+13k}{6}$ $+(k+1)^2+2$ $=\frac{2(k+1)^3+3(k+1)^2+13(k+1)}{6}$
Sebelah kiri:
$\frac{2k^3+3k^2+13k}{6}$ $+(k+1)^2+2$
$=\frac{2k^3+3k^2+13k}{6}+\frac{6k^2+12k+8}{6}$
$=\frac{2k^3+9k^2+25k+18}{6}$
Sebelah kanan:
$\frac{2(k+1)^3+3(k+1)^2+13(k+1)}{6}$
$=\frac{2k^3+6k^2+3+6k^2+12k+6+13k+13}{6}$
$=\frac{2k^3+9k^2+25k+18}{6}$

# Soal

$6 + 9 + 14 + 21 + 30 + 41 + 45....$ $+n^2+5$ $=\frac{n(n+1)(2n+1)}{6}+5n$
Selanjutnya $n=1$
$n^2+5=1^2+5=6$ atau
$=\frac{n(n+1)(2n+1)}{6}+5n$ = $\frac{1(1+1)(2.1+1)}{6}+5+1$
Selanjutnya $n=k$
$6 + 9 + 14 + 21 + 30 + 41 + 45...$ $+k^2+5$ $=\frac{k(k+1)(2k+1)}{6}+5k$
Selanjutnya $n=k+1$
$6+9+14+21+30+41+45...$ $+k+1^2+5$ $=\frac{k+1(k+1+1)(2.k+1+1)}{6}+5.k+1$
Pembuktian:
sebelah kiri
$\frac {(k(k+1)(2k+1)}{6}+5k$ $\frac{6(k+1)^2+5}{6}$
sebelah kanan
$\frac {(k(k+1)((k+1)(2(k+1)+1)}{6}+5k+1$
$\frac {(k+1)((k+2)(2k+3)}{6}$ $\frac{30(k+1)}{6}$
Verivikasih kesamaan
$\frac{(k+1)(2k+1)+6(k+1)^2+30}{6}$ = $\frac{(k+1)(2k+1)(2k+3)+30(k+1)}{6}$
$ 2k^2+9k^2+13k+6+30k +30$ = $2k^2+3k+k+6k^2+12k+6+30$
kedua sisi sama dan pembuktian selesai
$\frac{(k(k+1)(2k+1)}{6}+5k+((k+1)^2+5)$ = $\frac {(k+1)(k+1)+1)2((k+1)+1}{6}+5(k+1)$

# Soal

$10+ 13+ 18+ 25+ 34+ 45+ 58...$ $+ n^2+9$ $=\frac{n^3+6n^2+53n}{6}$
Selanjutnya $n=k$
$10+ 13+ 18+ 25+ 34+ 45+ 58...$ $+ k^2+9$ $=\frac{k^3+6k^2+53k}{6}$
Selanjutnya $n=k+1$
$10+ 13+ 18+ 25+ 34+ 45+ 58...$ $+ (k^2+9) +((k+1)^2+9)$ $=\frac{(k+1)^3+6(k+1)^2+53(k+1)}{6}$
Pembuktian:
$10+ 13+ 18+ 25+ 34+ 45+ 58...$ $+ (k^2+9) +((k+1)^2+9)$ $=\frac{(k+1)^3+6(k+1)^2+53(k+1)}{6}$
$\frac{k^3+6k^2+53k}{6} +((k+1)^2+9)$ $=\frac{(k+1)^3+6(k+1)^2+53(k+1)}{6}$
Sebelah kiri:
$=\frac{k^3+6k^2+53k}{6} +((k+1)^2+9)$
$= \frac{k^3+6k^2+53k}{6} +\frac{6k^2+12k^2+60}{6}-\frac {3k^2}{6}+ \frac {3k}{6} $
$= \frac{(k^3+6k^2+53k+60)+(6k^2+12k^2+60)-(3k^2)+(3k)}{6}$
$=\frac {k^3+9k^2+68k+60}{6} $

Sebelah kanan:
$=\frac{(k+1)^3+6(k+1)^2+53(k+1)}{6}$ $=(k+1)^2+6(k+1)^2+53(k+1)= (k^3+12k+53k)+(1+6+53)$

$ =\frac {k^3+9k^2+68k+60}{6} $
jadi = sebelah kanan = sebelah kiri
$ =\frac{k^3+6k^2+53k}{6} +((k+1)^2+9)$ $=\frac{(k+1)^3+6(k+1)^2+53(k+1)}{6}$
$=\frac {k^3+9k^2+68k+60}{6} $ $=\frac {k^3+9k^2+68k+60}{6} $

# Soal

$9+ 12+ 17+ 24+ 33+ 44+ 57...$ $+ n^2+8$ $=\frac{2n^3+3n^2+49n}{6}$

Mencari Un:
$a(1)^2+B+C=9$
$a(2)^2+B(2)+C=12$
$a(3)^2+B(3)+C=17$
Substitusi 1&2 :
$4a+2b+c=12$ dikurangi $a+b+c=9 , 3a+b=3$
Substitusi 2&3 :
$9a+3b+c=17$ dikurangi $4a+2b+c=12 , 5a+b=5$

$5a+b=5$ dikurangi $3a+b=3$
2a=2
$a=\frac{2}{2}=1$

$3a+b=3$
$3(1)+b=3$
$b=3-3=0$

a+b+c=9
1+0+c=9
c=9-1=8

Mencari Sn:
$Sn=\frac{n(n+1)(2n+1)}{6}+8n$
$n(n+1)(2n+1)=n(2n^2+n+2n+1)=2n^3+n^2+2n^2+n$
$\frac{n(n+1)(2n+1)}{6}= $ $\frac{2n^3+3n^2+n}{6}$
Tambahkan 8n:
$Sn=\frac{2n^3+3n^2+n}{6}$+ $\frac{48n}{6}$
$Sn=\frac{2n^3+3n^2+n+48n}{6}$
$Sn=\frac{2n^3+3n^2+49n}{6}$

Selanjutnya $n=1$
$n^2+8=1^2+8=9$ atau
$\frac{2n^3+3n^2+49n}{6}$ = $\frac{2+3+49}{6}$
Selanjutnya $n=k$
$9+ 12+ 17+ 24+ 33+ 44+ 57...$ $+ k^2+8$ $=\frac{2k^3+3k^2+49k}{6}$
Selanjutnya $n=k+1$
$9+ 12+ 17+ 24+ 33+ 44+ 57...$ $+ (k^2+8) +((k+1)^2+8)$ $=\frac{2(k+1)^3+3(k+1)^2+49(k+1)}{6}$

Pembuktian:
$9+ 12+ 17+ 24+ 33+ 44+ 57...$ $+ (k^2+8) +((k+1)^2+8)$ $=\frac{2(k+1)^3+3(k+1)^2+49(k+1)}{6}$
$\frac{2k^3+3k^2+49k}{6}+((k+1)^2+8)$ $=\frac{2(k+1)^3+3(k+1)^2+49(k+1)}{6}$
Sebelah kiri:
$=\frac{2k^3+3k^2+49k}{6} +((k+1)^2+8)$
$=\frac{2k^3+3k^2+49k}{6} +{k^2+2k+9}$
$=\frac{2k^3+3k^2+49k}{6} +{6.k^2+6.2k+6.9}$
$=\frac{2k^3+3k^2+49k+6k^2+12k+54}{6}$
$=\frac{2k^3+9k^2+61k+54}{6}$
Sebelah kanan:
$=\frac{2(k+1)^3+3(k+1)^2+49(k+1)}{6}$
$=\frac{2k^3+9k^2+61k+54}{6}$

# Soal

$2+9+28+65+126+217+344...$ $+n^3+1$ $=\frac{n^2(n+1)^2+4n}{4}$
Selanjutnya $n=1$
$n^3+1=1^3+1=2$ atau

$=\frac{n^2(n+1)^2+4n}{4}$= $\frac{1^2(1+1)^2+4.1}{4}$ $=2$
Selanjutnya $n=k$
$2+9+28+65+126+217+344...$ $+k^3+1$ $=\frac{k^2(k+1)^2+4k}{4}$
Selanjutnya $n=k+1$
$2+9+28+65+126+217+344...$ $+(k+1)^3+1$ $=\frac{(k+1)^2(k+1+1)^2+4(k+1)}{4}$
Pembuktian:
$\frac{k^2(k+1)^2+4k}{4}+(k+1)^3+1$ $=\frac{(k+1)^2(k+1+1)^2+4(k+1)}{4}$
sisi kiri:
$=\frac{k^2(k+1)^2+4k}{4}+(k+1)^3+1$
$=\frac{k^2(k+1)(k+1)+4k}{4}+{(k+1)(k+1)(k+1)(k+1)}+1$
$=\frac{k^2(k^2+2k+1)+4k}{4}+k^3+3k^2+3k+1+1$
$=\frac{k^4+2k^3+k^2+4k}{4}$ $+\frac{4(k^3+3k^2+3k+2)}{4}$
$=\frac{k^4+2k^3+k^2+4k+4k^3+12k^2+12k+8}{4}$
$=\frac{k^4+6k^3+13k^2+16k+8}{4}$
sisi kanan:
$=\frac{(k+1)^2(k+2)^2+4(k+1)}{4}$
$=\frac{(k+1)(k+1)(k+2)(k+2)+4k+4+4k+4}{4}$
$=\frac{(k^2+2k+1)(k^2+4k+4)+4k+4+4k+4}{4}$
$=\frac{k^4+4k^3+4k^2+2k^3+8k^2+8k+k^2+4k+4+4k+4}{4}$
$=\frac{k^4+gk^3+13k^2+16k+8}{4}$

Teori Bilangan: Induksi Matematika Rating: 4.5 Diposkan Oleh: Admin