Rumus Volume Kerucut
f(x)=If(0≤x≤4, x)
n=0deg
Surface(f,n,xAxis)
V=pi*Integral((f(x))^(2),0,4)

Asal Usul Rumus Volume Kerucut jika $x=r,y=t$ maka $y=mx$ sedangan $m=r/t$ maka $y=\frac{r}{t}x$ , Mencari Volume Kerucut
$=π \int\limits_0^t(\frac{r}{t}x)^2 dx$
$=π \int\limits_0^t(\frac{r}{t})^2 x^2 dx$
$=(\frac{r}{t})^2 π∫_0^tx^2 dx$
$=π (\frac{r^2}{t^2}) [\frac{1}{3} x^3 ]_0^t$
$=\frac{1}{3} π \frac{r^2}{t^2} t^3$
$=\frac{1}{3} πr^2 t$
Rumus Volume Tabung
f(x)=If(0≤x≤6, 3)
n=0deg
Surface(f,n,xAxis)
pi*Integral((f(x))^(2),0,6)
Asal Usul Rumus Volume Tabung jika $x=r,y=t$, Mencari Volume Tabung
Volume :
$ = π \int\limits_0^t x^2 dx $
$=π \int\limits_0^t r^2 dx $
$=π [r^2 x]_0^t$
$=πr^2 t$
Rumus Volume Bola
f: y=sqrt(4-x^(2))
n=0deg
Surface(f,n,xAxis)
V=pi*Integral((f(x))^(2),-2,2)

Asal Usul Rumus Volume Bola jika $x=r,y=r$, Mencari Volume Bola
Volume :
$x^2+y^2=r^2$
$x^2=r^2-y^2$
$V=2π \int\limits_0^r x^2 dy$
$=2π \int\limits_0^r (r^2-y^2 )dy$
$=2π[r^2 y-\frac{1}{3}y^3]_0^r$
$=2π(r^2 r-\frac{1}{3}r^3)$
$=2π(r^3-\frac{1}{3}r^3)$
$=2π\times \frac{3r^3}{3}-\frac{r^3}{3}$
$=2π\times \frac{2r^3}{3}$
$=\frac{4}{3} πr^3$