Soal Matematika Limit Trigonometri Part 13

Haii adik-adik...

Selamat datang di halaman contoh soal dan pembahasan "Limit Trigonometri". 
Di halaman ini akan membahas tentang contoh soal dan pembahasan lengkap mengenai Limit Trigonometri.

Untuk lebih jelasnya mari kita lihat contoh soal dan pembahasan dibawah ini!


1. \(\lim\limits_{x\rightarrow 1}\frac{\mathrm \cos 4x - 1 }{\mathrm x\tan 2x }\)=
a. 4
b. 2
c. -1
d. -4
e. -2
Jawaban: d. -4
Pembahasan :
\(\lim\limits_{x\rightarrow 1}\frac{\mathrm \cos 4x - 1 }{\mathrm x\tan 2x }\)
=\(\lim\limits_{x\rightarrow 1}\frac{-2 \sin^{2}2x}{x \tan  2x}\)
=\(\lim\limits_{x\rightarrow 1}\frac{-2 \sin 2x}{x}\times\frac{\sin 2x }{\tan  2x}\)
=\(-2\times2\times1= -4\)

2. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x \tan  x }{\mathrm 1-\cos 3x }\) =
  a. \(\frac{2}{9}\)
  b. \(\frac{1}{9}\)
  c. \(\frac{4}{9}\)
  d. \(\frac{5}{9}\)
  e. \(\frac{1}{9}\)
Jawaban: a. \(\frac{2}{9}\)
Pembahasan :
 \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x \tan  x }{\mathrm 1-\cos 3x }\)
= \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x \tan  x }{\mathrm 1 - (1-2 \sin^{2}\frac{3}{2}x)}\)
= \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x \tan  x }{\mathrm 2 \sin ^{2}\frac{3}{2} x}\times\frac{x}{x}\)
= \(\frac{1}{2}\times\lim_{x\rightarrow 0}\frac{x}{sin\frac{3}{2}x}\times\frac{x}{sin\frac{3}{2}x}\times\frac{\tan  x}{x}\)
= \(\frac{1}{2}\times\lim_{x\rightarrow 0}\frac{x}{sin\frac{3}{2}x}\times\frac{x}{sin\frac{3}{2}x}\times\lim_{x\rightarrow 0}\frac{\tan  x}{x}\)
= \(\frac{1}{2}\times\frac{1}{\frac{3}{2}}\times\frac{1}{\frac{3}{2}}\times1\)
= \(\frac{2}{9}\)

3. \(\lim\limits_{x\rightarrow \frac{x}{4}}\frac{\mathrm \cos 2x }{\mathrm \sin x - \cos x }\) =
  a. \(3\sqrt{2}\)
  b. \(\frac{1}{2}\sqrt{2}\)
  c. \(\sqrt\frac{1}{3}\)
  d. \(\sqrt{3}\)
  e. \(-\sqrt{2}\)
Jawaban: e. \(-\sqrt{2}\)
Pembahasan :
 \(\lim\limits_{x\rightarrow \frac{\eta }{4}}\frac{\mathrm \cos 2x }{\mathrm \sin x - \cos x }\)
= \(\lim\limits_{x\rightarrow \frac{\eta }{4}}\frac{\cos^{2}x - \sin^{x}}{\sin x - cos x}\)
= \(\lim\limits_{x\rightarrow \frac{\eta }{4}}\frac{(\cos x - \sin x)(cos x + \sin x)}{-(\cos x - \sin x)} \)
= \(\lim\limits_{x\rightarrow \frac{\eta }{4}}\frac{\cos x+\sin x}{-1}\)
= \(\lim\limits_{x\rightarrow \frac{\eta }{4}}(-\cos x-\sin x) \)
= \(-cos\frac{\eta}{4}-sin\frac{\eta}{4}\)
= \(-\frac{1}{2}\sqrt{2}-\frac{1}{2}\sqrt{2}\)
= \(-\sqrt{2}\)

4. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm 1-\cos 2x }{\mathrm 4x^{2}}\)=
a. \(\frac{1}{3}\)
b. \(\frac{1}{2}\)
c. \(\frac{1}{2}\sqrt{2}\)
d. \(\frac{1}{5}\)
e. \(\frac{1}{2}\sqrt{3}\)
Jawaban: b.\(\frac{1}{2}\)
Pembahasan :
\(\lim_{x\rightarrow 0}\frac{1-\cos 2x}{2x.\sin 2x}\)
= \(\lim_{x\rightarrow 0}\frac{2 \sin^{2} x}{2x.\sin 2x}\)
= \(\lim_{x\rightarrow 0}\frac{2 \sin x}{2x}\times\lim_{x\rightarrow 0}\frac{ \sin x}{2x}\)
= \(\frac{2}{2}\times\frac{1}{2}\)
= \(\frac{1}{2}\)

5. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x^{2} \sin x + 4 \sin x \sqrt{x}}{\mathrm 4x \tan  \sqrt{x} }\) =
  a. 4
  b. 2
  c. 1
  d.-4
  e.-2
Jawaban: c.1
Pembahasan :
 \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x^{2} \sin x + 4 \sin x \sqrt{x}}{\mathrm 4x \tan \sqrt{x}}\)
= \(\lim_{x\rightarrow 0} \frac{x^{2}.x + 4.x\sqrt{x}}{4x.\sqrt{x}}\)
= \(\lim_{x\rightarrow 0} \frac{x^{3} + 4x\sqrt{x}}{4x\sqrt{x}}\)
= \(\lim_{x\rightarrow 0} \frac{x^{3}}{4x\sqrt{x}} + \lim_{x\rightarrow 0}\frac{4x\sqrt{x}}{4x\sqrt{x}}\)
= \(\lim_{x\rightarrow 0}\frac{1}{4}x^{\frac{3}{2}} + \lim_{x\rightarrow 0} 1\)
= 0 + 1
= 1


6. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm -2 \sin^{2} 2x }{\mathrm x\tan 2x }\) =
  a.-4
  b. 2
  c.-1
  d. 4
  e.-2
Jawaban: a.-4
Pembahasan :
 \(\lim\limits_{x\rightarrow 0}\frac{\mathrm -2 \sin^{2} 2x }{\mathrm x\tan 2x }\)
= \(-2\lim_{x\rightarrow 0}\frac{\sin 2x \sin 2x }{x\frac{\sin 2x}{\cos 2x}}\)
= \(-2\lim_{x\rightarrow 0}\frac{\sin 2x \sin 2x }{x}\times\frac{\cos 2x}{\sin 2x}\)
= \(-2\lim_{x\rightarrow 0}\frac{\sin 2x \cos 2x }{x}\times\frac{\sin 2x}{\sin 2x}\)
= \(-2\lim_{x\rightarrow 0}\frac{\sin 2x \cos 2x}{x}\times1\)
= \(-2\lim_{x\rightarrow 0}\frac{\sin 2x}{x}\times\frac{2}{2}\cos 2x\)
= \(-2\times2\lim_{x\rightarrow 0}\frac{\sin 2x}{2x}\times \cos 2x\)
= \(-4 \lim_{x\rightarrow 0}1\times \cos 2x\)
= \(-4 \cos 2\times0\)
= \(-4\times1\)
= -4

7. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm \sin 6x }{\mathrm 2x }\) =
  a. 4
  b. 2
  c. 3
  d.-4
  e.-2
Jawaban:c.3
Pembahasan :
 Misalkan,
 6x = U , maka;
 x = u. \(\frac{1}{6}\)
= \(\lim\limits_{x\rightarrow 0}\frac{\mathrm \sin 6x }{\mathrm 2x }\)
= \(\lim_{x\rightarrow 0} = \frac{\sin u}{2(\frac{1}{6})}u\)
= \(\lim_{u\rightarrow 0}3\frac{\sin u}{u}\)
= \(3\lim_{u\rightarrow 0}\frac{\sin u}{u}\)
= \(3\times1\)
= 3

8. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm 4x }{\mathrm \sin 3x }\) =
  a. \( \frac{4}{3}\)
  b. \(\frac{3}{4}\)
  c. \(\frac{1}{3}\)
  d. \(\frac{1}{4}\)
  e. \(\frac{5}{4}\)
Jawaban: a. \(\frac{4}{3}\)
 Pembahasan :
 \(\lim\limits_{x\rightarrow 0}\frac{\mathrm \tan  4x }{\mathrm \sin 3x }\)
= \(\lim_{x\rightarrow 0}\frac{4}{3}\times\frac{\tan  4x}{4x}\times\frac{3x}{sin3x}\)
= \(\frac{4}{3}\times\lim_{x\rightarrow 0}\frac{\tan  4x}{4x}\times\lim_{x\rightarrow 0}\frac{3x}{\sin 3x}\)
= \(\frac{4}{3}\times1\times1\)
= \(\frac{4}{3}\)

9. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x \tan  3x }{\mathrm \sin^{2} 6x }\) =
  a. \(\frac{1}{3}\)
  b. \(\frac{1}{6}\)
  c. \(\frac{5}{12}\)
  d. \(\frac{1}{4}\)
  e. \(\frac{1}{12}\)
Jawaban: e. \(\frac{1}{12}\)
Pembahasan :
 \(\lim\limits_{x\rightarrow 0}\frac{\mathrm x \tan  3x }{\mathrm \sin^{2} 6x }\)
= \(\lim_{x\rightarrow 0}\frac{x}{\sin 6x}\times\lim_{x\rightarrow 0}\frac{\tan  3x}{\sin 6x}\)
= \(\frac{1}{6}\times\frac{3}{6}\)
= \(\frac{3}{36}\)
= \(\frac{1}{12}\)

10. \(\lim\limits_{x\rightarrow 0}\frac{\mathrm 5x \tan  8x}{\mathrm 1 - cos 4x}\) =
 a. 5
  b.-1
  c. 0
  d. \(\frac{1}{2}\)
 e. 4
Jawaban: a. 5
Pembahasan :
 \(\lim\limits_{x\rightarrow 0}\frac{\mathrm 5x \tan  8x}{\mathrm 1 - cos 4x}\)
= \(\lim_{x\rightarrow 0}\frac{5x \tan  8x}{1-(1 - 2\sin^{2}2x)}\)
= \(\lim_{x\rightarrow 0}\frac{5x \tan  8x }{2 \sin^{2} 2x}\)
= \(\lim_{x\rightarrow 0} \frac{5x}{2 \sin 2x}\times\frac{\tan  8x}{\sin 2x}\)
= \(\lim_{X\rightarrow 0}\frac{5}{2}\times\frac{2x}{\sin 2x}\times\frac{\tan  8x}{8x}\times\frac{2x}{\sin 2x}\times\frac{8x}{4x}\)
= \(\frac{5}{2}\)
= 5

Soal Matematika Limit Trigonometri Part 13 Rating: 4.5 Diposkan Oleh: Bella Bunda M