Soal Matematika Limit Trigonometri Part 11

Haii adik-adik...

Selamat datang di halaman contoh soal dan pembahasan "Limit Trigonometri ". Di halaman ini akan membahas tentang contoh soal dan pembahasan lengkap mengenai Limit Trigonometri.


Untuk lebih jelasnya mari kita lihat contoh soal dan pembahasan dibawah ini!


1. \(\lim\limits_{x\rightarrow 0}\frac{sin3x}{2x} \)=
a.\(\frac{1}{2}\)
b.\(\frac{1}{3}\)
c.\(\frac{3}{2}\)
d.\(\frac{4}{2}\)
e.\(\frac{6}{3}\)
pembahasan :
\(\lim\limits_{x\rightarrow0}\frac{sin3x}{2x}\)
=\(\lim\limits_{x\rightarrow0}\frac{sin3x}{2x}.\frac{3x}{3x}\)
=\(\lim\limits_{x\rightarrow0}\frac{sin3x}{3x}.\frac{3x}{2x}\)
=\(1.\frac{3}{2}\)
=\(\frac{3}{2}\)

2.\(\lim\limits_{x\rightarrow 0}\frac{5x}{3sin3x}\)=
a.\(\frac{1}{2}\)
b.\(\frac{5}{2}\)
c.\(\frac{1}{3}\)
d.\(\frac{7}{3}\)
e.\(\frac{5}{9}\)
pembahasan:
\(\lim\limits_{x\rightarrow 0}\frac{5x}{3sin3x}\)
=\(\lim\limits_{x\rightarrow 0}\frac{5x}{3sin3x}.\frac{3x}{3x}\)
=\(\lim\limits_{x\rightarrow 0}\frac{3x}{3sin3x}.\frac{5x}{3x}\)
=\(\lim\limits_{x\rightarrow 0}\frac{1}{3}.\frac{3x}{sin3x}.\frac{5x}{3x}\)
=\(\frac{1}{3}.1\frac{5}{3}\)
=\(\frac{5}{9}\)

3.\(\lim\limits_{x\rightarrow 0} \frac{sin4x}{3x}\)=
a.\(\frac{1}{2}\)
b.\(\frac{2}{2}\)
c.\(\frac{3}{4}\)
d.\(\frac{2}{3}\)
e.\(\frac{4}{3}\)
pembahasan
\(\Rightarrow \frac{sin ax}{bx}\)=\(\frac{a}{b}\)=\(\frac{sin 4x}{3x}\)=\(\frac{4}{3}\)

4. \(\lim\limits_{x\rightarrow 0} \frac{sin2x}{sin3x}\)=
a.\(\frac{1}{2}\)
b.\(\frac{3}{2}\)
c.\(\frac{2}{3}\)
d.\(\frac{6}{5}\)
e.\(\frac{3}{4}\)
pembahasan:
\(\Rightarrow \frac{sin ax}{sinbx}\)=\(\frac{a}{b}\)
=\(\frac{sin 2x}{sin3x}=\frac{2}{3}\)

5. \(\lim\limits_{x\rightarrow 0} \frac{sin2x}{tan7x}\)=
a.\(\frac{3}{4}\)
b.\(\frac{3}{5}\)
c.\(\frac{4}{3}\)
d.\(\frac{3}{7}\)
e.\(\frac{2}{7}\)
pembahasan:
\(\Rightarrow \frac{sin ax}{tanbx}\)=\(\frac{a}{b}\)
=\(\frac{sin 2x}{tan7x}\)=\(\frac{2}{7}\)

6. \(\lim\limits_{x\rightarrow \frac{1}{2}} \frac{sin(4x-2)}{tan(2x-1)}\)=
a.\(2\)
b.\(3\)
c.\(5\)
d.\(4\)
e.\(6\)
pembahasan:
misalkan: \(a=2x-1\)\(x=\frac{1}{2}\),
\(a=\lim\limits_{x\rightarrow \frac{1}{2}} \frac{sin(4x-2)}{tan(2x-1)}\)=\(\lim\limits_{x\rightarrow \frac{1}{2}} \frac{sin2(2x-1)}{tan(2x-1)}\)=
\(\lim\limits_{x\rightarrow \frac{1}{2}} \frac{sin2(a)}{tan(a)}\)=\(2\)

7.\(\lim\limits_{x\rightarrow 0} \frac{x^{2}+ \sin{x} \tan{x}} {1-cos2x}\)=
a.\(1\)
b.\(2\)
c.\(3\)
d.\(4\)
e.\(5\)
pembahasan:
\(\lim\limits_{x\rightarrow 0}\frac{x^{2}+\sin{x}\tan{x}}{1-(1-2\sin^2x)}\)=
\(\lim\limits_{x\rightarrow 0}\frac{x^{2}+\sin{x}\tan{x}}{2\sin^2x}\)=
\(\lim\limits_{x\rightarrow 0}\frac{x^{2}}{2\sin^{2}x}+\frac{\sin x\tan x}{2\sin^{2}}\)=
\(\lim\limits_{x\rightarrow 0}\frac{1}{2}.\frac{x}{sinx}.\frac{x}{sinx}+\frac{1}{2}.\frac{sinx}{sinx}.\frac{tanx}{sinx}\)=
\(\frac{1}{2}.1.1+\frac{1}{2}.1.1=1\)

8. \(\lim\limits_{x\rightarrow 0}\frac{2-2\cos2x}{x^2}\)=
a.\(1\)
b.\(3\)
c.\(4\)
d.\(5\)
e.\(6\)
pembahsan :
\(\lim\limits_{x\rightarrow 0} \frac{2-2\cos2x}{x^2}\)
=\(\lim\limits_{x\rightarrow 0} \frac{2(\cos2x)}{x^2}\)
=\(\lim\limits_{x\rightarrow 0} \frac{2(1-(1-2\sin^{2}x)}{x^2}\)
=\(\lim\limits_{x\rightarrow 0}\frac{2(1-1+2\sin^{2}x)}{x^2}\)
=\(\lim\limits_{x\rightarrow 0}\frac{2(2sin^{2}x)}{x^2}\)
=\(\lim\limits_{x\rightarrow 0}\frac{(4sin^{2}x)}{x^2}\)
=\(4.\lim\limits_{x\rightarrow 0}\frac{(sinx)^{2}}{x}\)
=\(4.1^{2}\)=\(4\)

9. \(\lim\limits_{x\rightarrow 0} \frac{x\tan3x}{sin^2 6x}\)=
a.\(\frac{1}{3}\)
b.\(\frac{1}{4}\)
c.\(\frac{1}{15}\)
d.\(\frac{1}{7}\)
e.\(\frac{1}{12}\)
pembahasan :
\(\lim\limits_{x\rightarrow 0} \frac{x\tan3x}{sin^2 6x}\)=
 \(\frac{x\tan3x}{sin6x.sin6x}\)=\(\frac{1x}{sin6x}.\frac{tan3x}{sin6x}\)
=\(\frac{1.3}{6.6}\)=\(\frac{1}{2}\)

10. \(\lim\limits_{x\rightarrow 0} \frac{\cos4x-1}{x\tan2x}\)=
a.\(1\)
b.\(-1\)
c.\(-4\)
d.\(4\)
e.\(0\)
pembahasan :
\(\lim\limits_{x\rightarrow 0} \frac{\cos4x-1}{x\tan2x}\)=
\(\frac{-2sin^{2}2x}{x\tan2x}\)=\(\frac{-2sin2x}{x}.\frac{sin2x}{tan2x}\)
=\(\frac{-2.2.2}{1.2}\)=\(-4\)



Soal Matematika Limit Trigonometri Part 11 Rating: 4.5 Diposkan Oleh: Bella Bunda M