Soal Matematika Logaritma Kelas X SMA part 5

Haii adik-adik...

Selamat datang di halaman contoh soal dan pembahasan "Logaritma". Di halaman ini akan membahas tentang contoh soal dan pembahasan lengkap mengenai Logaritma.


Untuk lebih jelasnya mari kita lihat contoh soal dan pembahasan dibawah ini!


41. \(\textrm{Diketahui }^{5}\log 3=a \textrm{ dan }^{3}\log 4=b.\textrm{ Nilai }^{4}\log 15=...\)
a) \(\frac{1+a}{ab}\)
b) \(\frac{1+a}{a+b}\)
c) \(\frac{1+a}{a-b}\)
d) \(\frac{ab}{1-a}\)
e) \(\frac{ab}{1-b}\)
\(^{5}\log 3=a;^{3}\log 4=b\\\textrm{Maka:}^{4}\log 15=\frac{\log 15}{\log 4}=\frac{\log 5.3}{\log 4}=\frac{\log 5+\log 3}{\log 4}=\frac{^{3}\log 5+^{3}\log 3}{^{3}\log 4}=\frac{\frac{1}{a}+1}{b}=\frac{1+a}{a}\times \frac{1}{b}=\frac{1+a}{ab}\)

42. \(\textrm{Jika persamaan }^{x}\log \left ( 2 \right )+^{x}\log \left ( 3x-4 \right )=2\\ \textrm{ mempunyai akar-akar }x_{1}\textrm{ dan }x_{2}\textrm{ dengan }x_{1}> x_{2}\textrm{ maka }x_{1}-x_{2}=...\)
a) \(0\)
b) \(1\)
c) \(2\)
d) \(3\)
e) \(4\)
\(^{x}\log \left ( 2 \right )+^{x}\log \left ( 3x-4 \right )=2\\\Rightarrow ^{x}\log\left ( 2 \right )\left ( 3x-4 \right )=^{x}\log x^{2}\\\Rightarrow \left ( 2 \right )\left ( 3x-4 \right )=x^{2}\\\Rightarrow 6x-8+x^{2}\\\Rightarrow x^{2}-6x+8=0\\\Rightarrow \left ( x-4 \right )\left ( x-2 \right )=0\\\Rightarrow x_{1}=4\textrm{ dan }x_{2}=2\left ( x_{1}> x_{2} \right )\\\textrm{Jadi, nilai dari }x_{1}-x_{2}=4-2=2\)

43. \(\textrm{Persamaan }^{\left ( x^{2}-6x+14 \right )}\log \left ( x-3 \right )=^{\left ( 4x^{2}-4x+1 \right )}\log \left ( x^{2}-6x+9 \right )\textrm{ dipengaruhi oleh x =...}\)
a) \(6\)
b) \(3\textrm{ atau }5\)
c) \(3\)
d) \(5\)
e) \(6\)
\(^{\left ( x^{2}-6x+14 \right )}\log\left ( x-3 \right )=^{\left ( 4x^{2}-4x+1 \right )}\log\left ( x^{2}-6x+9 \right )\\\Rightarrow ^{\left ( x^{2}-6x+14 \right )}\log\left (x- 3\right )=^{\left ( 2x-1 \right )^{2}}\log\left ( x-3 \right )^{2}\\\Rightarrow ^{\left ( x^{2-6x+14} \right )}\log\left ( x-3 \right )=^{\left ( 2x-1 \right )}\log\left ( x-3 \right )\\\Rightarrow x^{2}-6x+14=2x-1\\\Rightarrow x^{2}-8x+15=0\\\Rightarrow \left ( x-3 \right )\left ( x-5 \right )=0\\x=3\textrm{ atau }x=5\\\textrm{Syarat domain }x-3> 0\textrm{ maka HP={5}}\)

44. \(\textrm{Nilai x yang memenuhi }\frac{2x^{\log4x}}{x^{\log2x}}< \frac{1}{2}\textrm{ adalah ....}\)
a) \(x< -100\)
b) \(x< -10\)
c) \(0< x< \frac{1}{100}\)
d) \(\frac{1}{100}< x< \frac{1}{10}\)
e) \(2< x< 10\)
\(\frac{2x^{\log4x}}{x^{\log2x}}< \frac{1}{2}\\x^{\log4x-\log2x}< \frac{1}{4}\\x^{\log\frac{4x}{2x}}< \frac{1}{4}\\x^{\log2}< 2^{-2}\\ \log x^{\log2}< \log2^{-2}\\ \log2.\log x< -2.\log2\\ \log x< -2\Rightarrow \log x< \log 10^{-2}\\\Rightarrow x< \frac{1}{100}\\\textrm{Syarat domain untuk logaritma, yaitu }x> 0\\\textrm{Jadi, HP}=\left \{ 0< x< \frac{1}{100} \right \}\)

45. \(\textrm{Jika }b=a^{4}, a\textrm{ dan }b\textrm{ positif maka }^{a}\log b-^{b}\log a\textrm{ adalah...}\)
a) \(0\)
b) \(1\)
c) \(2\)
d) \(3\frac{3}{4}\)
e) \(4\frac{1}{4}\)
\(\textrm{Jika }b=a^{4}\textrm{ maka }^{a}\log b=4\textrm{ dan }^{b}\log a=\frac{1}{4}\\\textrm{Jadi, nilai dari }^{a}\log b-^{b}\log a=4-\frac{1}{4}=3\frac{3}{4}\)

46. \(\textrm{Jika }a=^{9}\log\left ( \sqrt[3]{16} \right )\textrm{ dan }b=^{2}\log\left ( \frac{1}{3} \right )\textrm{ maka ab =...}\)
a) \(\frac{4}{3}\)
b) \(\frac{2}{3}\)
c) \(\frac{4}{9}\)
d) \(-\frac{2}{3}\)
e) \(-\frac{4}{3}\)
\(a=^{9}\log\left ( \sqrt[3]{16} \right )\textrm{ dan }b=^{2}\log\left ( \frac{1}{3} \right )\\\textrm{Maka:}\\ab=^{9}\log\left ( \sqrt[3]{16} \right ).^{2}\log\left ( \frac{1}{3} \right )=^{3^{2}}\log^{\frac{4}{3}}.^{2}\log3^{-1}=\frac{4}{\frac{3}{2}}^{3}\log 2.^{2}\log 3^{-1}=\frac{2}{3}^{3}\log 3^{-1}=\frac{2}{3}.\left ( -1 \right )=-\frac{2}{3}\)

47. \(\textrm{Nilai maksimum fungsi }f\left ( x \right )=^{2}\log\left ( x+5 \right )+^{2}\log\left ( 3-x \right )\textrm{ adalah ...}\)
a) \(4\)
b) \(8\)
c) \(12\)
d) \(15\)
e) \(16\)
\(f\left ( x \right )=^{2}\log\left ( x+5 \right )+^{2}\log\left ( 3-x \right )\\\Rightarrow f\left ( x \right )=^{2}\log\left ( x+5 \right )\left ( 3-x \right )\\\Rightarrow f\left ( x \right )=^{2}\log\left ( -x^{2}-2x+15 \right )\\\textrm{Misalkan, }-x^{2}-2x+15=g\left ( x \right )\textrm{ maka }f\left ( x \right )\textrm{ akan maksimal jika }g\left ( x \right )\textrm{ juga maksimal.}\\\textrm{Nilai maksimal dari g(x) jika: }\\x=-\frac{b}{2a}=-\frac{-2}{2\left ( -1 \right )}=-1\\\textrm{Sehingga nilai maksimal dari f(x) adalah: }\\f\left ( -1 \right )=^{2}\log\left ( -\left ( -1 \right )^{2}-2\left ( -1 \right )+15 \right )=^{2}\log\left ( -1+2+15 \right )=^{2}\log 16=4\)

48. \(\textrm{Nilai dari }\frac{\log\left ( a^{2}-x^{2} \right )}{\log a}-^{a}\log\left [ 1-\frac{x^{2}}{a^{2}} \right ]\textrm{ adalah...}\)
a) \(-2\)
b) \(-1\)
c) \(1\)
d) \(2\)
e) \(3\)
\(\frac{\log\left ( a^{2}-x^{2} \right )}{\log a}-^{a}\log\left [ 1-\frac{x^{2}}{a^{2}} \right ]=^{a}\log\left ( a^{2}-x^{2} \right )-^{a}\log\left [ 1-\frac{x^{2}}{a^{2}}\right ]=^{a}\log \left ( \frac{a^{2}-x^{2}}{1-\frac{x^{2}}{a^{2}}} \right )\\ =^{a}\log\left ( \frac{a^{2}-x^{2}}{\frac{a^{2}}{a^{2}}-\frac{x^{2}}{a^{2}}} \right )=^{a}\log\left ( a^{2}-x^{2}:\frac{a^{2}-x^{2}}{a^{2}} \right )=^{a}\log\left ( a^{2}-x^{2}\times \frac{a^{2}}{a^{2}-x^{2}} \right )=^{a}\log\left ( a^{2} \right )=2\)

49. \(\textrm{Jika }^{\frac{1}{a}}\log\frac{1}{b}=2\textrm{ maka...}\)
a) \(^{b}\log a=2\)
b) \(^{a}\log b=2\)
c) \(^{\frac{1}{a}}\log\frac{1}{b}=\frac{1}{2}\)
d) \(^{a}\log\frac{1}{b}=2\)
e) \(^{b}\log\frac{1}{a}=\frac{1}{2}\)
\(^{\frac{1}{a}}\log\frac{1}{b}=2\\\Rightarrow ^{a^{-1}}\log b^{-1}=2\\\Rightarrow \frac{-1}{-1}^{a}\log b=2\Rightarrow ^{a}\log b=2\)


50. \(\textrm{Jika }\left ( ^{a}\log\left ( 3x-1 \right ) \right )-\left ( ^{5}\log a \right )=3\textrm{ maka nilai x adalah...}\)
a) \(36\)
b) \(39\)
c) \(42\)
d) \(45\)
e) \(48\)
\(\left ( ^{a}\log\left ( 3x-1 \right ) \right )\left ( ^{5}\log a \right )=3\\\Rightarrow ^{a}\log\left ( 3x-1 \right )=\frac{3}{^{5}\log a}\\\Rightarrow ^{a}\log\left ( 3x-1 \right )=3.^{a}\log 5\\\Rightarrow ^{a}\log\left ( 3x-1 \right )=^{a}\log5^{3}\\\Rightarrow 3x-1=125\\\Rightarrow x=\frac{125+1}{3}=42\)


Soal Matematika Logaritma Kelas X SMA part 5 Rating: 4.5 Diposkan Oleh: Admin